skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jamil, Md Hasibul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large-scale deep learning workloads increasingly suffer from I/O bottlenecks as datasets grow beyond local storage capacities and GPU compute outpaces network and disk latencies. While recent systems optimize data-loading time, they overlook the energy cost of I/O—a critical factor at large scale. We introduce EMLIO, an Efficient Machine Learning I/O service that jointly minimizes end-to-end data-loading latency (𝑇) and I/O energy consumption (𝐸) across variable-latency networked storage. EMLIO deploys a lightweight data-serving daemon on storage nodes that serializes and batches raw samples, streams them over TCP with out-of-order prefetching, and integrates seamlessly with GPU-accelerated (NVIDIA DALI) pre-processing on the client side. In exhaustive evaluations over local disk, LAN (0.05 ms & 10 ms round trip time (RTT)), and WAN (30 ms RTT) environments, EMLIO delivers on average up to 8.6X faster I/O and 10.9X lower energy use compared to state-of-the-art loaders, while maintaining constant performance and energy profiles irrespective of network distance. EMLIO’s service-based architecture offers a scalable blueprint for energy-aware I/O in next-generation AI clouds. 
    more » « less
    Free, publicly-accessible full text available November 15, 2026